Here are the answers with discussion for this Weekend’s Quiz. The information provided should help you work out why you missed a question or three! If you haven’t already done the Quiz from yesterday then have a go at it before you read the answers. I hope this helps you develop an understanding of Modern…
The Weekend Quiz – May 8-9, 2021 – answers and discussion
Here are the answers with discussion for this Weekend’s Quiz. The information provided should help you work out why you missed a question or three! If you haven’t already done the Quiz from yesterday then have a go at it before you read the answers. I hope this helps you develop an understanding of modern monetary theory (MMT) and its application to macroeconomic thinking. Comments as usual welcome, especially if I have made an error.
Question 1:
Assume that a national is continuously running an external deficit of 2 per cent of GDP. In this economy, if the private domestic sector successfully saves overall, we would always find:
(a) A fiscal deficit.
(b) A fiscal surplus.
(c) Cannot determine because we would need to know the scale of the private domestic sector saving as a % of GDP.
The answer is Option (a) – A fiscal deficit.
This question requires an understanding of the sectoral balances that can be derived from the National Accounts. But it also requires some understanding of the behavioural relationships within and between these sectors which generate the outcomes that are captured in the National Accounts and summarised by the sectoral balances.
To refresh your memory the sectoral balances are derived as follows. The basic income-expenditure model in macroeconomics can be viewed in (at least) two ways: (a) from the perspective of the sources of spending; and (b) from the perspective of the uses of the income produced. Bringing these two perspectives (of the same thing) together generates the sectoral balances.
From the sources perspective we write:
GDP = C + I + G + (X – M)
which says that total national income (GDP) is the sum of total final consumption spending (C), total private investment (I), total government spending (G) and net exports (X – M).
Expression (1) tells us that total income in the economy per period will be exactly equal to total spending from all sources of expenditure.
We also have to acknowledge that financial balances of the sectors are impacted by net government taxes (T) which includes all taxes and transfer and interest payments (the latter are not counted independently in the expenditure Expression (1)).
Further, as noted above the trade account is only one aspect of the financial flows between the domestic economy and the external sector. we have to include net external income flows (FNI).
Adding in the net external income flows (FNI) to Expression (2) for GDP we get the familiar gross national product or gross national income measure (GNP):
(2) GNP = C + I + G + (X – M) + FNI
To render this approach into the sectoral balances form, we subtract total taxes and transfers (T) from both sides of Expression (3) to get:
(3) GNP – T = C + I + G + (X – M) + FNI – T
Now we can collect the terms by arranging them according to the three sectoral balances:
(4) (GNP – C – T) – I = (G – T) + (X – M + FNI)
The the terms in Expression (4) are relatively easy to understand now.
The term (GNP – C – T) represents total income less the amount consumed less the amount paid to government in taxes (taking into account transfers coming the other way). In other words, it represents private domestic saving.
The left-hand side of Equation (4), (GNP – C – T) – I, thus is the overall saving of the private domestic sector, which is distinct from total household saving denoted by the term (GNP – C – T).
In other words, the left-hand side of Equation (4) is the private domestic financial balance and if it is positive then the sector is spending less than its total income and if it is negative the sector is spending more than it total income.
The term (G – T) is the government financial balance and is in deficit if government spending (G) is greater than government tax revenue minus transfers (T), and in surplus if the balance is negative.
Finally, the other right-hand side term (X – M + FNI) is the external financial balance, commonly known as the current account balance (CAD). It is in surplus if positive and deficit if negative.
In English we could say that:
The private financial balance equals the sum of the government financial balance plus the current account balance.
We can re-write Expression (6) in this way to get the sectoral balances equation:
(5) (S – I) = (G – T) + CAB
which is interpreted as meaning that government sector deficits (G – T > 0) and current account surpluses (CAB > 0) generate national income and net financial assets for the private domestic sector.
Conversely, government surpluses (G – T < 0) and current account deficits (CAB < 0) reduce national income and undermine the capacity of the private domestic sector to add financial assets.
Expression (5) can also be written as:
(6) [(S – I) – CAB] = (G – T)
where the term on the left-hand side [(S – I) – CAB] is the non-government sector financial balance and is of equal and opposite sign to the government financial balance.
This is the familiar MMT statement that a government sector deficit (surplus) is equal dollar-for-dollar to the non-government sector surplus (deficit).
The sectoral balances equation says that total private savings (S) minus private investment (I) has to equal the public deficit (spending, G minus taxes, T) plus net exports (exports (X) minus imports (M)) plus net income transfers.
All these relationships (equations) hold as a matter of accounting and not matters of opinion.
So what economic behaviour might lead to the outcome specified in the question?
If the nation is running an external deficit it means that the contribution to aggregate demand from the external sector is negative – that is net drain of spending – dragging output down.
The reference to the specific 2 per cent of GDP figure was to place doubt in your mind. In fact, it doesn’t matter how large or small the external deficit is for this question.
Assume, now that the private domestic sector (households and firms) seeks to increase its saving ratio and is successful in doing so.
Consistent with this aspiration, households may cut back on consumption spending and save more out of disposable income.
The immediate impact is that aggregate demand will fall and inventories will start to increase beyond the desired level of the firms.
The firms will soon react to the increased inventory holding costs and will start to cut back production.
How quickly this happens depends on a number of factors including the pace and magnitude of the initial demand contraction.
But if the households persist in trying to save more and consumption continues to lag, then soon enough the economy starts to contract – output, employment and income all fall.
The initial contraction in consumption multiplies through the expenditure system as workers who are laid off also lose income and their spending declines.
This leads to further contractions.
The declining income leads to a number of consequences.
Net exports improve as imports fall (less income) but the question clearly assumes that the external sector remains in deficit.
Total saving actually starts to decline as income falls as does induced consumption.
So the initial discretionary decline in consumption is supplemented by the induced consumption falls driven by the multiplier process.
The decline in income then stifles firms’ investment plans – they become pessimistic of the chances of realising the output derived from augmented capacity and so aggregate demand plunges further.
Both these effects push the private domestic balance further towards and eventually into surplus
With the economy in decline, tax revenue falls and welfare payments rise which push the public fiscal balance towards and eventually into deficit via the automatic stabilisers.
If the private sector persists in trying to increase its saving ratio then the contracting income will clearly push the fiscal position into deficit.
So if there is an external deficit and the private domestic sector saves overall (a surplus) then there will always be a fiscal deficit.
The higher the private saving overall, the larger the fiscal deficit.
The following Table shows you the sectoral balances written as (G-T) = (S-I) – (X-M) and how the fiscal deficit rises as the private domestic saving rises.
Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | Period 6 | |
External Balance (X – M) | -2 | -2 | -2 | -2 | -2 | -2 |
Fiscal Balance (G – T) | 3 | 4 | 5 | 6 | 7 | 8 |
Private Domestic Balance (S – I) | 1 | 2 | 3 | 4 | 5 | 6 |
The following blog posts may be of further interest to you:
- Barnaby, better to walk before we run
- Stock-flow consistent macro models
- Norway and sectoral balances
- The OECD is at it again!
Question 2:
Government bonds constitute non-government financial wealth. Accordingly, non-government net worth immediately rises if the government issues new bonds to match its deficit spending.
The answer is False.
The mainstream macroeconomic textbooks all have a chapter on fiscal policy (and it is often written in the context of the so-called IS-LM model but not always).
The chapters always introduces the so-called ‘Government Budget Constraint’ that alleges that governments have to ‘finance’ all spending either through taxation; debt-issuance; or money creation.
The textbooks fail to convey an understanding that government spending is performed in the same way irrespective of the accompanying monetary operations.
They claim that money creation (borrowing from central bank) is inflationary while the latter (private bond sales) is less so.
These conclusions are based on their erroneous claim that ‘money creation’ adds more to aggregate demand than bond sales, because the latter forces up interest rates which crowd out some private spending.
All these claims are without foundation in a fiat monetary system and an understanding of the banking operations that occur when governments spend and issue debt helps to show why.
So what would happen if a sovereign, currency-issuing government (with a flexible exchange rate) ran a fiscal deficit without issuing debt?
Like all government spending, the Treasury would credit the reserve accounts held by the commercial bank at the central bank. The commercial bank in question would be where the target of the spending had an account.
So the commercial bank’s assets rise and its liabilities also increase because a deposit would be made.
The transactions are clear:
1. The commercial bank’s assets rise and its liabilities also increase because a new deposit has been made.
2. Further, the target of the fiscal initiative enjoys increased assets (bank deposit) and net worth (a liability/equity entry on their balance sheet).
Taxation does the opposite and so a deficit (spending greater than taxation) means that reserves increase and private net worth increases.
This means that there are likely to be excess reserves in the ‘cash system’ which then raises issues for the central bank about its liquidity management.
The aim of the central bank is to ‘hit’ a target interest rate and so it has to ensure that competitive forces in the interbank market do not compromise that target.
When there are excess reserves there is downward pressure on the overnight interest rate (as banks scurry to seek interest-earning opportunities), the central bank then has to sell government bonds to the banks to soak the excess up and maintain liquidity at a level consistent with the target.
Some central banks offer a return on overnight reserves which reduces the need to sell debt as a liquidity management operation.
There is no sense that these debt sales have anything to do with ‘financing’ government net spending.
The sales are a monetary operation aimed at interest-rate maintenance.
So M1 (deposits in the non-government sector) rise as a result of the deficit without a corresponding increase in liabilities.
It is this result that leads to the conclusion that that deficits increase net financial assets in the non-government sector.
What would happen if there were bond sales?
All that happens is that the banks reserves are reduced by the bond sales but this does not reduce the deposits created by the net spending. So net worth is not altered.
What is changed is the composition of the asset portfolio held in the non-government sector.
The only difference between the Treasury ‘borrowing from the central bank’ and issuing debt to the private sector is that the central bank has to use different operations to pursue its policy interest rate target.
If it debt is not issued to match the deficit then it has to either pay interest on excess reserves (which most central banks are doing now anyway) or let the target rate fall to zero (the Japan solution).
There is no difference to the impact of the deficits on net worth in the non-government sector.
Mainstream economists would say that by draining the reserves, the central bank has reduced the ability of banks to lend which then, via the money multiplier, expands the money supply.
However, the reality is that:
- Building bank reserves does not increase the ability of the banks to lend.
- The money multiplier process so loved by the mainstream does not describe the way in which banks make loans.
- Inflation is caused by aggregate demand growing faster than real output capacity. The reserve position of the banks is not functionally related with that process.
So the banks are able to create as much credit as they can find credit-worthy customers to hold irrespective of the operations that accompany government net spending.
This doesn’t lead to the conclusion that deficits do not carry an inflation risk. All components of aggregate demand carry an inflation risk if they become excessive, which can only be defined in terms of the relation between spending and productive capacity.
It is totally fallacious to think that private placement of debt reduces the inflation risk. It does not.
So in terms of the specific question, you need to consider the reserve operations that accompany deficit spending.
Like all government spending, the Treasury would credit the reserve accounts held by the commercial bank at the central bank.
The commercial bank in question would be where the target of the spending had an account.
So the commercial bank’s assets rise and its liabilities also increase because a deposit would be made.
The transactions are clear:
1. The commercial bank’s assets rise and its liabilities also increase because a new deposit has been made.
2. Further, the target of the fiscal initiative enjoys increased assets (bank deposit) and net worth (a liability/equity entry on their balance sheet).
Taxation does the opposite and so a deficit (spending greater than taxation) means that reserves increase and private net worth increases.
This means that there are likely to be excess reserves in the “cash system” which then raises issues for the central bank about its liquidity management as explained above.
But at this stage, M1 (deposits in the non-government sector) rise as a result of the deficit without a corresponding increase in liabilities. In other words, fiscal deficits increase net financial assets in the non-government sector.
You may wish to read the following blog posts for more information:
- Why history matters
- Building bank reserves will not expand credit
- Building bank reserves is not inflationary
- The complacent students sit and listen to some of that
- Saturday Quiz – February 27, 2010 – answers and discussion
Question 3:
A government wanting to achieve full employment after a deep recession will succeed if it uses discretionary fiscal policy to ensure real GDP growth gets back on trend.
The answer is False.
The previous trend output trajectory may still have been associated with the presence of mass unemployment.
To see why, we might usefully construct a scenario that will explicate the options available to a government:
- Trend real GDP growth rate is 3 per cent annum.
- Labour productivity growth (that is, growth in real output per person employed) is growing at 2 per cent per annum. So as this grows less employment in required per unit of output.
- The labour force is growing by 1.5 per cent per annum. Growth in the labour force adds to the employment that has to be generated for unemployment to stay constant (or fall).
- The average working week is constant in hours. So firms are not making hours adjustments up or down with their existing workforce. Hours adjustments alter the relationship between real GDP growth and persons employed.
We can use this scenario to explore the different outcomes.
The trend rate of real GDP growth doesn’t relate to the labour market in any direct way. The late Arthur Okun is famous (among other things) for estimating the relationship that links the percentage deviation in real GDP growth from potential to the percentage change in the unemployment rate – the so-called Okun’s Law.
The algebra underlying this law can be manipulated to estimate the evolution of the unemployment rate based on real output forecasts.
From Okun, we can relate the major output and labour force aggregates to form expectations about changes in the aggregate unemployment rate based on output growth rates. A series of accounting identities underpins Okun’s Law and helps us, in part, to understand why unemployment rates have risen.
Take the following output accounting statement:
(1) Y = LP*(1-UR)LH
where Y is real GDP, LP is labour productivity in persons (that is, real output per unit of labour), H is the average number of hours worked per period, UR is the aggregate unemployment rate, and L is the labour force. So (1-UR) is the employment rate, by definition.
Equation (1) just tells us the obvious – that total output produced in a period is equal to total labour input [(1-UR)LH] times the amount of output each unit of labour input produces (LP).
Using some simple calculus you can convert Equation (1) into an approximate dynamic equation expressing percentage growth rates, which in turn, provides a simple benchmark to estimate, for given labour force and labour productivity growth rates, the increase in output required to achieve a desired unemployment rate.
Accordingly, with small letters indicating percentage growth rates and assuming that the average number of hours worked per period is more or less constant, we get:
(2) y = lp + (1 – ur) + lf
Re-arranging Equation (2) to express it in a way that allows us to achieve our aim (re-arranging just means taking and adding things to both sides of the equation):
(3) ur = 1 + lp + lf – y
Equation (3) provides the approximate rule of thumb – if the unemployment rate is to remain constant, the rate of real output growth must equal the rate of growth in the labour force plus the growth rate in labour productivity.
It is an approximate relationship because cyclical movements in labour productivity (changes in hoarding) and the labour force participation rates can modify the relationships in the short-run. But it provides reasonable estimates of what happens when real output changes.
The sum of labour force and productivity growth rates is referred to as the required real GDP growth rate – required to keep the unemployment rate constant.
Remember that labour productivity growth (real GDP per person employed) reduces the need for labour for a given real GDP growth rate while labour force growth adds workers that have to be accommodated for by the real GDP growth (for a given productivity growth rate).
So in the example, the required real GDP growth rate is 3.5 per cent per annum and if policy only aspires to keep real GDP growth at its trend growth rate of 3 per cent annum, then the output gap that emerges is 0.5 per cent per annum.
The unemployment rate will rise by this much (give or take) and reflects the fact that real output growth is not strong enough to both absorb the new entrants into the labour market and offset the employment losses arising from labour productivity growth.
So the appropriate fiscal strategy does not relate to “trend output” but to the required real GDP growth rate given labour force and productivity growth. The two growth rates might be consistent but then they need not be. That lack of concordance makes the proposition false.
The following blog post may be of further interest to you:
That is enough for today!
(c) Copyright 2021 William Mitchell. All Rights Reserved.
OK – so I’m a smarty pants and scored 3 out of 3 – intuitively I have to admit…
But (from Q2’s answer) “The aim of the central bank is to ‘hit’ a target interest rate and so it has to ensure that competitive forces in the interbank market do not compromise that target.
When there are excess reserves there is downward pressure on the overnight interest rate (as banks scurry to seek interest-earning opportunities), the central bank then has to sell government bonds to the banks to soak the excess up and maintain liquidity at a level consistent with the target.”
Are there some equations they use to work out what ‘excess’ is and what ‘consistent liquidity’ is – and how is that driven by the banking regulations – the ones that say you must balance excess or lack of reserves with the central bank overnight? Without that knowledge, how can we properly understand that the ‘transactions are clear’? They might be acccountingly clear, but why?
Something I picked up in my (you might call it – I’m reluctant to) career was the ability and willingness to ask the question ‘why’ five times. It tends not to make you many friends – but it does expose an awful lot of furphies.
This whole central bank transaction process needs clarification, and even Bill seems to shy away from it. Not the what, but the why. Why, to every answer, and then why, why, why, and again, why?
Because imho (as the current online vernacular goes) unless MMT can expose these fundamentals, then it really is trying to push water uphill. Is that actually MMT’s job? Open question…
In the answer to question 3, the reasoning is incorrect.
Equation (2) does not follow from equation (1) and the conclusion, while correct, does not follow from equation (3).
If you take equation (3) as it stands and suppose that the output proportional growth rate equals the proportional growth rate of labour productivity plus the labour force proportional growth rate, then
ur = 1,
which is clearly incorrect.
The argument is clearer if you work with the employment rate, say ER, instead of the unemployment rate UR. Then ER = 1 – UR, equation (1) becomes
Y = LP*ER*LF*H
and equation (3) becomes
er = y – lp – lf, and the conclusion follows as before.